Principal Component Analysis using R

ثبت نشده
چکیده

This tutorial is designed to give the reader a short overview of Principal Component Analysis (PCA) using R. PCA is a useful statistical method that has found application in a variety of fields and is a common technique for finding patterns in data of high dimension. Consider we are confronted with the following situation: The data, we want to work with, are in form of a matrix (xij)i=1...N,j=1...M , where xi,jrepresents the value of the i-th observation of the j-th variable. Thus the N members of the population can be identified with the N rows of the data matrix, each correspondending to a M -dimensional vector denoting the values of the different variables. If M is very large it is often desireable to reduce the number of considered variables and to replace M by a smaller number of variables, while losing as little information as possible. Mathematically spoken, PCA is a linear orthogonal transformation, that transforms the data to a new coordinate system such that the greatest variance by any projection of the data comes to lie on the first coordinate (called the first principal component), the second greatest variance on the second coordinate, and so on . . . . The (Principal) Components are linear combinations of the original data and a formally description can be found in the book of Carmona (p. 84ff). The data for this analysis are in the package Rsafd:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Development of a cell formation heuristic by considering realistic data using principal component analysis and Taguchi’s method

Over the last four decades of research, numerous cell formation algorithms have been developed and tested, still this research remains of interest to this day. Appropriate manufacturing cells formation is the first step in designing a cellular manufacturing system. In cellular manufacturing, consideration to manufacturing flexibility and productionrelated data is vital for cell formation....

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Discrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques

ABSTRACT- Firmness is one of the most important quality indicators for apple fruits, which is highly correlated with the storage time. The acoustic impulse response technique is one of the most commonly used nondestructive detection methods for evaluating apple firmness. This paper presents a non-destructive method for classification of Iranian apple (Malus domestica Borkh. cv. Golab) according...

متن کامل

اعتباریابی نسخه بازنگری‌شده پرسش‌نامه رفتار ذخیره‌ای: سنجه احتکار وسواسی

AbstractObjectives: This study was carried out with the aim of validation of Saving Inventory-Revised (SI-R), which includes subjects related to hoarding and the failure to discard possessions that are useless or of limited value, and occur in many clinical syndromes, especially in obsessive-compulsive disorder. Method: In this descriptive cross-sectional study 348 individuals (142 males and 20...

متن کامل

An Empirical Comparison between Grade of Membership and Principal Component Analysis

t is the purpose of this paper to contribute to the discussion initiated byWachter about the parallelism between principal component (PC) and atypological grade of membership (GoM) analysis. The author testedempirically the close relationship between both analysis in a lowdimensional framework comprising up to nine dichotomous variables and twotypologies. Our contribution to the subject is also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009